A taste of topos theory

Mark Hopkins August 2020, **fp-syd**

@antiselfdual mjhopkins.github.io

Categories

Objects, arrows, composition, identities.

The category Set

Objects sets Arrows functions

$$0 = \varnothing \xrightarrow{!} X$$

Terminal object

$$X \xrightarrow{!} \{*\} = 1$$

$$1 \longrightarrow \{1, 2, 3, 4\}$$
$$* \longmapsto 3$$

$\{a, b, c\} \uplus \{c, d\} = \{(a, 0), (b, 0), (c, 0), (c, 1), (d, 1)\}$

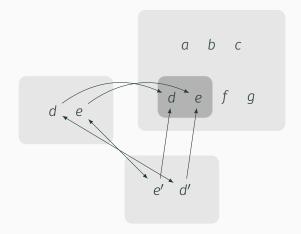
$$\{a, b, c\} \times \{c, d, e, f\} = \{(a, c), (a, d), (a, e), (a, f), \\(b, c), (b, d), (b, e), (b, f), \\(c, c), (c, d), (c, e), (c, f)\}$$

We can form the set $Y^X = \{$ functions from X to $Y \}$.

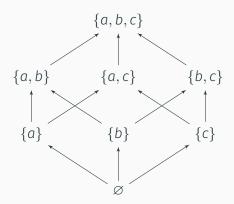
$\{b,c\}\subseteq\{a,b,c,d\}$

Almost the same as an injective function.

Subobjects (in Set)



Powersets



 $\mathcal{P}\{a, b, c\} = \{\varnothing, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, b, c\}\}$

$$\mathsf{Bool} = \{T, F\}$$

$$A \subseteq X \quad \longleftrightarrow \quad \chi_A : X \to \mathsf{Bool}$$

$$A = \{x \in X \mid \chi_A(x)\} = \chi_A^{-1}(T)$$

$$A \cup B = \{x \mid \chi_A(x) \lor \chi_B(x)\}$$
$$A \cap B = \{x \mid \chi_A(x) \land \chi_B(x)\}$$
$$\emptyset = \{x \mid F\}$$
$$X = \{x \mid T\}$$

Functor categories

A functor between categories is a structure-preserving mapping.

$$\begin{array}{rccc} F: & \mathcal{C} & \longrightarrow & \mathcal{D} \\ F: & \mathcal{C}(c,c') & \longrightarrow & \mathcal{D}(Fc,Fc') \end{array}$$

F(g f) = (Fg) (Ff) $F(1_c) = 1_{Fc}$

 $F: \mathcal{C} \to \mathcal{D}$ $G: \mathcal{C} \to \mathcal{D}$

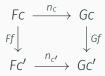
The images of C under F and G are pictures of C inside D.

A natural transformation from *F* to *G* morphs *F*'s picture of *C* into *G*'s.

A natural transformation between two functors *F*, *G* with the same source and target categories is:

for every object *c* in the source category, an arrow in the target category from *Fc* to *Gc*.

But these arrows have to cooperate with the images of arrows under *F* and *G*:



Functor category $[\mathcal{C},\mathcal{D}]$

Objects functors from \mathcal{C} to \mathcal{D}

Arrows an arrow from *F* to *G* is a natural transformation from *F* to *G*

A **presheaf** is a functor $C^{op} \rightarrow Set$. We call [C^{op} , Set] a presheaf category.

If $A \in C$, we can define a presheaf $\underline{A} = C(-, A)$.

$$\begin{array}{cccc} \underline{A}: C & \longrightarrow & \mathsf{Set} \\ B & \longmapsto & C(B, A) \end{array} \\ (f: B \to B') & \longmapsto & \left(\mathcal{C}(B', A) & \xrightarrow{-\circ f} & \mathcal{C}(B, A)\right) \\ & g & \longmapsto & g \circ f \end{array}$$

$\left[1,Set\right]$

The category 1

A natural transformation $F \longrightarrow G$ is just a function $F_* \longrightarrow G_*$.

Representables in [1, Set]

 $\begin{array}{c} \underline{1}: 1 \longrightarrow \mathsf{Set} \\ * \longmapsto \{1_*\} \end{array}$

Subobjects of $\underline{1} = \{\underline{0}, \underline{1}\}$

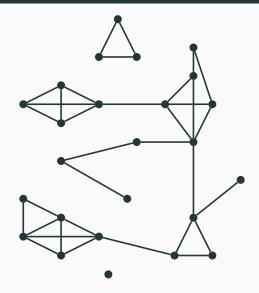
$\underline{0}: \mathbf{1} \longrightarrow \mathsf{Set}$ $* \longmapsto \varnothing$

 $\{\underline{0},\underline{1}\}\cong\mathsf{Bool}$

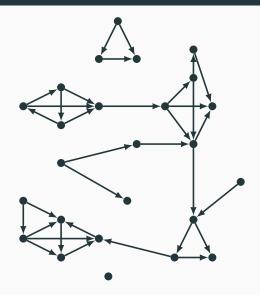
- A **subfunctor** *F* of *G* is an equivalence class of monomorphisms $F \rightarrow G$.
- A monomorphism between functors is a natural transformation where every component is an monomorphism.

What is a graph?

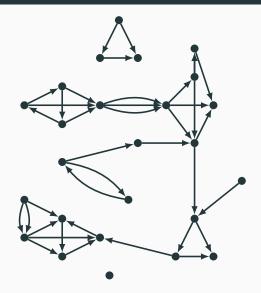
Nodes and edges



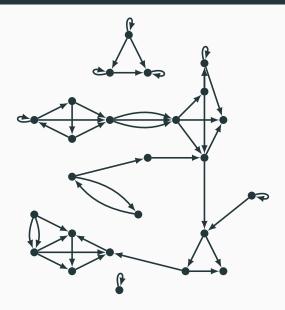
Directed?



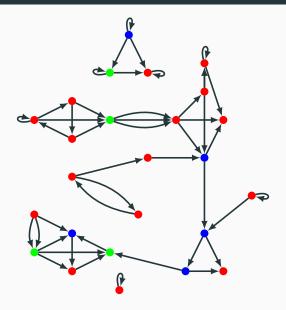
Multiple edges?



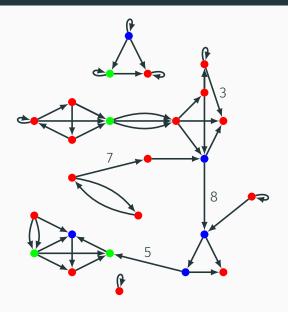
Loops?



Node labels?



Edge labels?



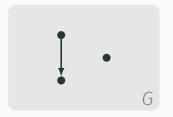
- Hypergraphs
- Simplicial/globular/cubical sets

Map nodes to nodes and edges to edges (but the nodes have to follow the edges)

Graph homomorphisms

Graph homomorphisms

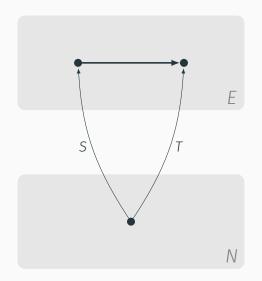
Graph homomorphisms



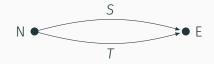
Categories as specifications

Explain it to me like I'm five





So we get a category ${\mathcal G}$



The category of graphs Graph is the functor category [\mathcal{G}^{op} , Set].

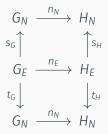
A graph X is a functor $\mathcal{G}^{op} \longrightarrow \mathsf{Set}$.

In other words

- sets X_N, X_E
- functions $s := X_S, t := X_T$

 $s, t: X_E \rightarrow X_N$

A graph homomorphism $n: G \rightarrow H$ is a natural transformation $G \rightarrow H$ i.e.



The empty graph

 $0_N = \emptyset$ $0_E = \emptyset$

Terminal object

$$1_N = \{*\}$$

 $1_E = \{*\}$

A point of G is a graph homomorphism $1 \longrightarrow G$. In other words a *loop* in G.

Sums

$$(G + H)_N = G_N \uplus H_N$$

 $(G + H)_E = G_E \uplus H_E$

$$s(e) = \begin{cases} s_G(e) \text{ if } e \in G_E \\ s_H(e) \text{ if } e \in H_E \end{cases}$$
$$t(e) = \begin{cases} t_G(e) \text{ if } e \in G_E \\ t_H(e) \text{ if } e \in H_E \end{cases}$$

$$(G \times H)_N = G_N \times H_N$$

 $(G \times H)_E = G_E \times H_E$

$$s(e_1, e_2) = (s(e_1), s(e_2))$$

 $t(e_1, e_2) = (t(e_1), t(e_2))$

We can form the graph *H^G* of graph homomorphisms from *G* to *H*.

$$(H^G)_N = \text{Graph}(N \times G, H)$$

 $(H^G)_E = \text{Graph}(E \times G, H)$

There are two representables <u>N</u>, <u>E</u>.

$$\underline{N}_N = \{1_N\} = \{N\} \qquad \underline{E}_N = \{S, T\}$$
$$\underline{N}_E = \emptyset \qquad \underline{E}_E = \{1_E\} = \{E\}$$

There are two representables <u>N</u>, <u>E</u>.

$$\underline{N}_N = \{1_N\} = \{N\} \qquad \underline{E}_N = \{S, T\}$$
$$\underline{N}_E = \emptyset \qquad \underline{E}_E = \{1_E\} = \{E\}$$

If \underline{C} is a representable and X is a presheaf then

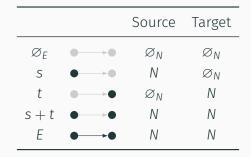
$$X(C) \cong [\mathcal{C}^{op}, \mathsf{Set}](\underline{C}, X).$$

For any graph X, we can identify

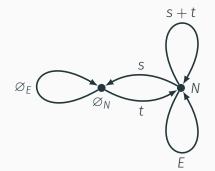
- the set X_N of nodes with the set of graph morphisms $\underline{N} \longrightarrow X$
- the set X_E of edges with the set of graph morphisms <u> $E \longrightarrow X_E$ </u>

 \underline{N} has two subgraphs: O_N and \underline{N} .

<u>E</u> has five subgraphs.

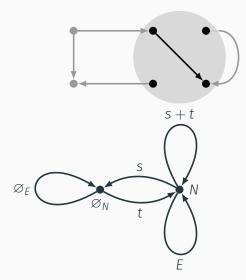


These fit together to make a graph Ω .

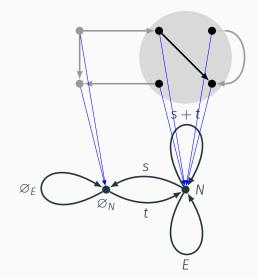


$\boldsymbol{\Omega}$ classifies subgraphs, in the same way that Bool classifies subsets.

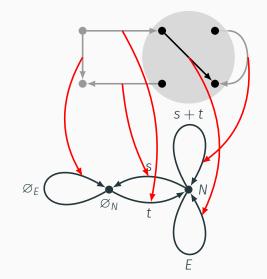
Ω classifies subgraphs!



Ω classifies subgraphs!



Ω classifies subgraphs!



 $\boldsymbol{\Omega}$ has three points.

1 has three subgraphs.

The point 1 $\xrightarrow{E} \Omega$ corresponds to "true".

We have a graph Ω^G of subgraphs of any graph G.

Meet, join, implication

$$\begin{split} &\wedge:\Omega\times\Omega\to\Omega\\ &\vee:\Omega\times\Omega\to\Omega\\ &\Rightarrow:\Omega\times\Omega\to\Omega \end{split}$$

A **topos** is a category that

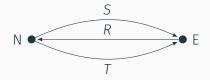
- is finitely complete (products and equalizers)
- \cdot has function objects
- has a subobject classifier

Every presheaf category is a topos!

Other notions of graph

Symmetric graphs

Reflexive graphs

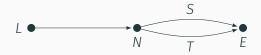


Reflexive symmetric graphs



IS = TIT = S $I^{2} = 1$ SR = 1TR = 1

Node-labelled graphs



Edge-labelled graphs

Node and Edge-labelled graphs

Semisimplicial sets

Objects N,
$$E_1$$
, E_2 , E_3 , ...
Arrows $n_i^n : N \longrightarrow E_n$, $n = 1, 2, ..., i = 1, ..., n$

Simple graphs? Fixing the set of labels?

The same, but now Ω only classifies *strong* subobjects.

- Leray, 1945
- Cartan seminar, 1948
- Grothendieck, 1955
- Grothendieck, Verdier (SGA), 1962
- Lawvere, Tierney, 1962

Further reading i

🔋 Robert Goldblatt.

Topoi: the categorial analysis of logic. Dover. 2014.

Peter T. Johnstone.

Topos Theory.

Dover Books on Mathematics. Dover Publications, 2014.

F William Lawvere.

Qualitative distinctions between some toposes of generalized graphs.

Categories in computer science and logic (Boulder, CO, 1987), 92:261–299, 1989.

Todd Trimble.

An elementary approach to elementary topos theory. nlab.

- Sebastiano Vigna.

A guided tour in the topos of graphs.

arXiv: Category Theory, 2003.